ยุคลิดแห่งอะเล็กซานเดรีย (Euclid of Alexandria, ประมาณ 325 – 270 ปีก่อนคริสต์ศักราช) เป็นนักคณิตศาสตร์ที่มีอิทธิพลมาก ที่สุดจนกระทั่งถึงศตวรรษที่ 20 เพียงแต่เรากล่าว ถึงชื่อของท่านก็จะทำให้เรานึกถึงวิชาเรขาคณิต แม้ว่าท่านจะไม่ใช่นักคณิตศาสตร์ที่เป็นคนคิดริเริ่มสิ่งใหม่ แต่ท่านก็มีส่วนช่วยสนับสนุนในการรวบรวมวิชาเรขาคณิตลงในหนังสือมากที่สุด ที่เรารู้จักกันคือหนังสือ Elements ซึ่งรวบรวมผล งานชิ้นสำคัญ ๆ ของนักคณิตศาสตร์ที่มีชื่อเสียงก่อนหน้าท่าน ผลงานที่ยิ่งใหญ่ของท่านชิ้นนี้กลายเป็นรูปแบบของการให้เหตุผลที่ดี เป็นมาตรฐานความรู้ทางเรขาคณิต อีกทั้งเป็นรูปแบบของการเขียนตำราทางคณิตศาสตร์และวิทยาศาสตร์มาเป็นเวลา มากกว่า 2000 ปี
ประวัติ
เป็นที่น่าเสียดายเหลือเกินที่เรารู้ เรื่องราวต่าง ๆ ที่เกี่ยวข้องกับชีวิตและบุคลิกภาพของยุคลิดน้อยมาก รู้แค่เพียงว่าท่านเคยเป็นศาสตราจารย์ด้านคณิตศาสตร์ของมหาวิทยาลัยอะเล็กซานเดรีย (University of Alexandria)ต่อจาก พลาโต (Plato, ประมาณ 428 – 384 ปีก่อนคริสต์ศักราช) และก่อนหน้าอาร์คีมี ดีส (Archimedes, ประมาณ 287 – 212 ปีก่อนคริสต์ศักราช) และได้ชีวิติอยู่ที่ อะเล็กซานเดรียอีกเป็นเวลานาน รวมถึงเป็นผู้ก่อตั้งสำนักคณิตศาสตร์แห่งอะเล็กซานเดรีย (Alexandria School of Mathematics) ขึ้นด้วย ซึ่งสำนักแห่งนี้ก็มีชื่อเสียงต่อมาอีกเป็นเวลานาน สถานที่เกิดและสถานที่ตายของท่านเราก็ไม่ทราบอย่างแน่ชัด แต่มีนักเขียนชาวอาหรับกล่าวไว้ว่ายุคลิดเกิดในเมืองไทร์ (Tyre) ของกรีก ซึ่งปัจจุบันคือประเทศเลบานอน แต่ว่าเขาอาจจะเป็นชาวอียิปต์ก็เป็นได้
มีหลักฐานอีกอย่างหนึ่งที่ทำให้เรา เชื่อได้ว่ายุคลิดเคยได้รับการศึกษาทางด้านคณิตศาสตร์ที่สำนักพลาโตนิก (Platonic School) ที่กรุงเอ เธนส์ (Athens) มาก่อน และมาอยู่ที่อะเล็กซานเดรียภายหลังจากที่พระเจ้าอะเล็กซานเดอร์มหาราช (Alexander the Great, ประมาณ 359 – 323 ปี ก่อนคริสต์ศักราช) ได้สร้างเมืองอะเล็กซานเดรียขึ้น และท่านก็มีชื่อเสียงแพร่หลายในรัชสมัยโตเลมีที่ 1 พระ เจ้าโซเตอร์ (Ptolemy I Sotor, ประมาณ 367 – 282 ปีก่อนคริสต์ศักราช) ซึ่งพระ เจ้าโตเลมีที่ 1 นี่เองที่ทรงเป็นผู้สร้างมหาวิทยา ลัยอะเล็กซานเดรียขึ้นเมื่อประมาณ 300 ปีก่อนคริสต์ ศักราช โดยมีวัตถุประสงค์เพื่อต้องการที่จะชัดจูงคนที่มีการศึกษาดีมาอยู่ในเมือง นี้ และมหาวิทยาลัยแห่งนี้ก็นับได้ว่าเป็นสถาบันการศึกษาแห่งแรกที่มีลักษณะ คล้ายคลึงกับมหาวิทยาลัยในปัจจุบันมากที่สุด มีทั้งห้องบรรยาย ห้องทดลอง สวน พิพิธภัณฑ์ ห้องสมุดและที่อยู่ของเจ้าหน้าที่ แต่สิ่งที่สำคัญที่สุดคือห้องสมุด ซึ่งสร้างไว้ได้อย่างใหญ่โตมาก และนับว่าเป็นที่เก็บรวบรวมผลงานที่ใช้ในการศึกษาในมหาวิทยาลัยเป็นจำนวนมาก ดังที่มีคำกล่าวเปรียบเปรยว่า ภายในระยะเวลา 40 ปี นับตั้งแต่มีการก็ตั้งห้องสมุดมาเท่านั้นก็มีม้วนกระดาษปาปิรุส (papyrus rolls) มากกว่า 6 แสนม้วน และอะเล็กซานเดรียก็กลายเป็นศูนย์กลางทางด้านวิชาการ (Intellectual metropolis) ของชาวกรีกติดต่อกันมาเป็นเวลานับพันปี
เรื่องเล่าเกี่ยวกับยุคลิด
ปัปปุส (Pappus, ประมาณ ค.ศ. 300) นัก คณิตศาสตร์ที่มีชื่อเสียงอีกท่านหนึ่งเคยยกย่องยุคลิดไว้ว่า “เมื่อเปรียบเทียบกับอะโปลโลเนียส (Apollonius of Perga, ประมาณ 225 ปีก่อนคริสต์ศักราช) แล้ว ยุคลิดช่างเป็นคนที่ถ่อมตนและนึกถึงคนอื่น ๆ อยู่เสมอ”
โปรคลุส (Proclus, ค.ศ. 410 – 485) ได้เล่าเรื่องราวเกี่ยวกับ ยุคลิดในหนังสือ Eudemian Summary ว่า “เมื่อยุคลิดได้เป็นพระอาจารย์วิชาเรขาคณิตในพระเจ้าโตเลมีที่ 1 พระองค์มีรับสั่งถามยุคลิดว่า ‘มี ทางลัดสำหรับการเรียนวิชาเรขาคณิตไหม?’ ยุคลิดทูล ตอบว่า ‘ไม่มีลาดพระบาทสำหรับการเรียนเรขาคณิต’ (There is no royal road to geometry.)” กล่าวคือ การศึกษาวิชาเรขาคณิตไม่ใช่สิ่งที่สะดวกสบายและทำได้ง่าย ๆ แต่มีบางคนกล่าวว่าคำพูดนี้เป็นคำพูดของเมแนชมุส (Menaechmus, ประมาณ 350 ปีก่อนคริสต์ศักราช) เมื่อทูลตอบพระเจ้าอะเล็กซานเดอร์มหาราช
เมื่อมีลูกศิษย์คนหนึ่งถามยุคลิดใน ระหว่างที่เรียนเรขาคณิตว่า “เราจะได้อะไรเป็นผลตอบแทนบ้างจากการเรียนสิ่งที่ยากเหล่านี้” (What will I get by learning difficult thing?) ซึ่งคำ ถามนี้คงจะหมายความว่าจะนำความรู้ทางเรขาคณิตไปใช้ประโยชน์อะไรได้บ้าง เพราะเรขาคณิตที่ยุคลิดสอนนั้นมีแต่การพิสูจน์และการให้เหตุผล ซึ่งเป็นการยากที่ยุคลิดจะตอบได้ในทันทีทันใด ท่านจึงสั่งให้ทาสไปหยิบเหรียญเงิน 2 โอปอลมา 1 เหรียญมอบให้แก่ลูกศิษย์คนนั้นและตอบว่า “เจ้าจะต้องได้รับกำไรหรือประโยชน์จากสิ่งที่เรียนรู้แน่นอน” (for he must make a profit from what he learns.) ที่ ยุคลิดกล่าวเช่นนั้นเพื่อแสดงให้เห็นว่าในการเรียนวิชาคณิตศาสตร์ไม่มีทาง ลัด และไม่สามารถเรียนหรือฝึกหัดแทนกันได้ ผู้เรียนจะต้องพอใจและรักในวิชาคณิตศาสตร์เพราะตัววิชาคณิตศาสตร์เอง
จากเรื่องที่เล่ามานี้แสดงให้เห็นว่า ยุคลิดเป็นผู้ที่มีความรอบรู้และมีความอดทน และเป็นครูที่ดี เป็นนักอนุรักษ์ เป็นผู้ที่อุทิศเวลาให้กับการศึกษาคณิตศาสตร์ และเป็นผู้ที่มีความลึกซึ้งในวิชาคณิตศาสตร์มาก
ผลงาน
ผลงานที่สำคัญของยุคลิดคือการเขียนตำราทางคณิตศาสตร์ และดารศาสตร์ ผลงานบางชิ้นสูญหายไปแล้ว เช่น งานเขียนเกี่ยวกับภาคตัดกรวยที่ยุคลิดรวบรวมจากการค้นคว้าของอริสเตอุส (Aristaeus, ประมาณ 320 ปีก่อนคริสต์ศักราช)ซึ่งเป็นนักเรขาคณิตยุคเดียวกับยุค ลิด และงานเขียนเกี่ยวกับภาคตัดกรวยเช่นกันแต่เป็นผลงานของเมแนชมุส
ยุคลิดมีผลงานอย่างน้อยที่สุด 9 ชิ้น ได้แก่ Elements, Data, On Divisions (หรือ ), Pseudaria, Porissms, Conics, Phacnomena, Optics, Elements of Music แต่มีผล งานที่ ยังคงเหลืออยู่ในปัจจุบัน 5 ชิ้นด้วยกัน คือ
- Division of Figures กล่าวถึงการแบ่งรูปในระนาบ ประกอบด้วยทฤษฎีบท 36 บท เข่น ทฤษฎีบทที่ 1 ว่าด้วยการสร้างเส้นตรงให้ขนานกับฐาน ของสามเหลี่ยมและแบ่งสามเหลี่ยมออกเป็นสองส่วนโดยมีพื้นที่เท่ากัน เป็นต้น
- Data เปรียบเทียบได้กับคู่มือการสอนที่ใช้ควบคู่กับ หนังสือ Elements 6 เล่มแรก เนื้อหาสาระจึงเน้นที่การชี้แนะวิธีวิเคราะห์ปัญหาทางเรขาคณิต
- Phacnomena กล่าวถึงเรขาคณิตบนทรงกลม
- Optics กล่าวถึงการศึกษาเกี่ยวกับปรากฏการณ์ของแสง
- Elements เป็นตำราทางเรขาและคณิตศาสตร์ที่มีชื่อ เสียงที่สุดของท่านซึ่งเราจะกล่าวถึงอย่างละเอียดต่อไป
Elements ของยุคลิด
ที่ต้องนำหนังสือ Elements มากล่าวเป็นกรณีพิเศษก็ เนื่องจากว่าเป็นหนังสือที่มีชื่อเสียงมากที่สุดของยุคลิด และได้รับการกล่าวขวัญว่าเป็นตำราที่สำคัญที่สุดเล่มหนึ่งในประวัติศาสตร์ ของมวลมนุษยชาติ เป็นหนังสือที่มีคนอ่านมากที่สุดเป็นดับสองรองจากคำภีร์ไบเบิ้ล และถ้าไม่นับรวมคำภีร์ไบเบิ้ลแล้ว อาจกล่าวได้ว่าไม่มีหนังสือเล่มใดจะมีอิทธิพลต่อวิถีชีวิตของมนุษย์และถูก ใช้อย่างกว้างขวางเท่ากับ Elements ว่ากันว่าใน ทันทีที่หนังสือ Elements ออกมายุคลิดก็ได้รับการ กล่าวถึงอย่างชื่นชมอย่างกว้างขวาง ทั้งที่จริง ๆ แล้วยุคลิดมีผลงานออกมาแล้วหลายเล่ม และนับตั้งแต่สมัยของยุคลิดจนกระทั่งถึงสมัยใหม่หากเพียงแต่กล่าวว่าทฤษฎี หรือบทสร้างที่เท่าใด ใน Elements เล่มไหนก็จะสร้าง สามารถบอกได้ทันทีว่าทฤษฎีบทหรือบทสร้างนั้นมีใจความว่าอย่างไร
หนังสือ Elements ได้รับการปรับปรุงแก้ไข มากกว่า 1 พันครั้งและเป็นเวลานานกว่า 2 พันปีที่ Elements มีอิทธิพลต่อการสอน วิชาเรขาคณิตในสถาบันการศึกษาทั่วโลก
700 ปีหลังจากที่ยุคลิดได้เขียน หนังสือ Elements ขึ้น ธีออน (Theon, ประมาณ ค.ศ. 390) เป็น ผู้ปรับปรุง Elements เป็นท่านแรก หลังจากนั้นก็มีการปรับปรุงอีก จนกระทั่งเริ่มคริสต์ศตวรรษที่ 19 มีการค้นพบ Elements ที่ห้องสมุดสำนักวาติกัน ซึ่งเชื่อกันว่าเป็นฉบับที่คัดลอกมาจากฉบับที่ปรับปรุงโดยธีออน บทนิยาม สัจพจน์ (ทั้ง Axioms และ Postulates) แตกต่างจากของเดิมบ้าง แต่ทฤษฎีบทและการพิสูจน์ยังคงคล้ายคลึงกับที่ยุคลิดเขียน
การแปล Elements เป็นภาษาละตินครั้งแรกมิได้แปลจากต้นฉบับ ที่เป็นภาษากรีก แต่แปลจากต้นฉบับที่เป็นภาษาอาหรับ เหตุที่เป็นเช่นนี้เพราะว่าในสมัยที่อะเล็กซานเดรียเสื่อมลง และตกเป็นส่วนหนึ่งของโรมัน ความรู้ต่าง ๆ ถูกขนย้ายไปอยู่ทีตะวันออกกลาง และที่นั่นเองได้มีการเก็บรักษาความรู้ของชาวกรีกที่อะเล็กซานเดรีย รวมถึงการแปลหนังสือต่าง ๆ จากภาษากรีกเป็นภาษาอาหรับ ซึ่งเป็นผลดีเพราะเป็นการเก็บรักษาความรู้ของกรีกไว้ตลอดระยะเวลาที่ยุโรปตก อยู่ในยุดมืด (Dark Age) ต่อมาหลังจากพ้นยุคมืดไป แล้วก็ได้มีนักปราชญ์หลายท่านได้แปล Elements จาก ภาษาอาหรับเป็นภาษาละติน จนกระทั่งปี ค.ศ. 1570 Elements ภาคภาษาอังกฤษฉบับสมบูรณ์ฉบับแรกก็ไดรับการ ตีพิมพ์ออกมา
ลักษณะสำคัญของหนังสือ Elements
1. หนังสือ Elements ถือว่าเป็นต้นแบบของระบบคณิตศาสตร์ในปัจจุบัน กล่าวคือในหนังสือ Elements ยุคลิดได้กำหนดข้อตกลง ขึ้น 10 ประการ ยุคลิดเรียกข้อตกลง 5 ประการแรกว่าสัจพจน์ (Axioms) หรือคอมมอน โนชั่น (Common Notions) ซึ่งหมายถึงสิ่งที่เห็นได้ จริงโดยไม่ต้องมีการพิสูจน์ในคณิตศาสตร์ทุกแขนง ส่วนข้อตกลง 5 ประการหลังยุคลิดเรียกว่าพอสจูเลต (Postulates) หมายถึงสิ่งที่เห็นได้จริงโดยไม่ต้องพิสูจน์ในทางเรขาคณิต ข้อตกลงดังกล่าวมีดังนี้
A1 สิ่งทั้งหลายที่เท่ากับสิ่งเดียวกัน สิ่งเหล่านั้นย่อมเท่ากัน
A2 สิ่งที่เท่ากัน เมื่อถูกเพิ่มด้วยสิ่งที่เท่ากัน ผลย่อมเท่ากัน
A3 สิ่งที่เท่ากัน เมื่อถูกหักออกด้วยสิ่งที่เท่ากัน ผลย่อมเท่ากัน
A4 สิ่งที่ทุกอย่างร่วมกันย่อมเท่ากัน
A5 ส่วนรวมย่อมใหญ่กว่าส่วนย่อย
P1 ลากเส้นตรงจากจุดหนึ่งไปยังอีกจุดหนึ่งได้
P2 ต่อเส้นตรงที่มีความยาวจำกัดออกไปเรื่อย ๆ
P3 เขียนวงกลมได้เมื่อกำหนดจุดศูนย์กลางและระยะทางใด ๆ
P4 มุมฉากทุกมุมย่อมเท่ากัน
P5 ถ้าเส้นตรงเส้นหนึ่ง ผ่านเส้นตรง 2 เส้น ทำให้มุมภายในที่อยู่ด้านเดียวกันรวมกันน้อยกว่า 2 มุมฉาก แล้วเส้นตรงสองเส้นจะตัดกันทางด้านที่มีมุมรวมกันน้อยกว่า 2 มุมฉาก ถ้าลากเส้นนั้นต่อไปเรื่อยๆ
จากข้อตกลงทั้ง 10 ประการนี้ ยุคลิดสามารถนำไปสร้างทฤษฎีบทได้ 465 ทฤษฎี โดยใช้วิธีการที่เรียกว่า “การสังเคราะห์” ด้วยการนำบทนิยามหรือทฤษฎีที่รู้แล้ว ประกอบกับการให้เหตุผลเชิงตรรกศาสตร์ ไปสร้างข้อสรุปหรือทฤษฎีบทใหม่ที่มีความซับซ้อนมากขึ้น ต่อจากนั้นจึงได้ใช้วิธีการวิเคราะห์พิสูจน์ข้อสรุปหรือทฤษฎีบทเหล่านั้นว่า เป็นจริง
2. ยุคลิดให้นิยามคำศัพท์ทุกคำที่ต้องใช้ในหนังสือ Elements เช่น คำว่าจุด เส้น ระนาบ เป็นต้น
3. การพิสูจน์ที่ปรากฏ ในหนังสือ Elements ยุคลิดได้พยายามใช้หลักเกณฑ์ อย่างเคร่งครัด นอกจากนี้การพิสูจน์ทฤษฎีบทบางบท จัดได้ว่าเป็นวิธีการให้เหตุผลเชิงคณิตศาสตร์ที่สละสลวยและสวยงาม จนถือเป็นแบบฉบับมาจนทุกวันนี้ เช่น การพิสูจน์ว่า จำนวนเฉพาะมีจำนวนไม่จำกัด เป็นต้น
หนังสือ Elements มีทั้งหมด 13 เล่ม ซึ่งมีเนื้อหาส่วนใหญ่เกี่ยวกับเรขาคณิต แต่ก็มีการกล่าวถึงพีชคณิต เรขาคณิตเชิงพีชคณิตเบื้องตน และทฤษฎีจำนวนเบื้องต้น เนื้อหาส่วนใหญ่เป็นผลงานของคนอื่น แต่ทว่ายุคลิดได้นำผลงานของนักปราชญ์คนอื่น ๆ ในสมัยก่อน ๆ มารวบรวมเข้าด้วยกันอย่างมีระบบ และเป็นลำดับเหตุผลต่อเนื่องกัน ซึ่งเนื้อหาของทั้ง 13 เล่ม มีรายละเอียดโดยสังเขปดังนี้
- เล่ม 1 ประกอบไปด้วยบทนิยาม 13 นิยาม สัจพจน์ 10 ข้อ ยุคลิดเรียกสัจพจน์ 5 ข้อแรกว่า Postulates และ 5 ข้อหลังเรียกว่า Common notion และทฤษฎี บทอีก 48 ทฤษฎีบท ซึ่งรวมถึงทฤษฎีปีทาโกรัสและบทกลับเอาไว้ด้วย
- เล่ม 2 เกี่ยวกับการเปลี่ยนรูป พื้นที่ของรูปต่าง ๆ และพีชคณิตเชิงเรขาคณิตของปีทาโกรัส
- เล่ม 3 เป็นทฤษฎีบทเกี่ยวกับวงกลม คอร์ด เส้นสัมผัสวงกลมและการวัดมุมต่าง ๆ
- เล่ม 4 เป็นการอภิปรายผลงานของโรงเรียนปีทาโก เรียน เรื่อง การสรางรูปหลายเหลี่ยมด้านเท่าโดยใช้วงเวียนและสันตรง
- เล่ม 5 ยุคลิดนำแนวคิดของยูโดซุสมาอธิบายเรื่องทฤษฎีสัดส่วนได้ อย่างดีเยี่ยม และนำการประยุกต์ในการหาขนาด ซึ่งแก้ปัญหาที่เกิดขึ้นจากการค้นพบจำนวนอตรรกยะ
- เล่ม 6 นำทฤษฎีสัดส่วนของยูโดซุสมาใช้กับเรขาคณิตในระนาบเกี่ยว กับทฤษฎีบทของรูปสามเหลี่ยมคล้าย
- เล่ม 7 ทฤษฎีจำนวน: การจำแนกจำนวนเป็นจำนวนคู่ จำนวนคี่ จำนวนเฉพาะ และจำนวนนสมบูรณ์ (Perfect Number) ตัว หารร่วมมาและตัวคูณร่วมน้อย
- เล่ม 8 สัดส่วนต่อเนื่อง
- เล่ม 9 เกี่ยวกับทฤษฎีจำนวนต่อจากเล่ม 7 และ 8 ทฤษฎี ที่มีชื่อเสียงของเล่มนี้คือ จำนวนเฉพาะมีจำนวนไม่จำกัด
- เล่ม 10 เกี่ยวกับเรขาคณิตที่เกี่ยวกับ จำนวนอตรรกยะ
- เล่ม 11 ความรู้เกี่ยว กับเรขาคณิตสามมิติที่สมนัยกับเล่ม 1
- เล่ม 12 เรื่องปริมาตรและทฤษฎีบทของยูโด ซุสเกี่ยวกับระเบียบวิธีเกษียณ (Method of exhaustion) ซึ่งเป็นพื้นฐานนำไปสู่เรื่องลิมิต (Limit)
- เล่ม 13 เกี่ยวกับการสร้างรูปทรงสามมิติ
ปิดท้าย
แม้ว่า ยุคลิดจะไม่ได้เป็นนักคณิตศาสตร์ที่สร้างสรรค์งานทางคณิตศาสตร์ขึ้นใหม่ แต่งานที่เขารวบรวมขึ้นอย่างเป็นระบบ กลับกลายเป็นผลงานที่มีผลกระทบต่อมนุษยชาติมามากกว่า 2000 ปี โดยเฉพาะทางด้านเรขาคณิต จึงไม่น่าแปลกถ้าหากเราไปอ่านหนังสือบางเล่ม จะกล่าวยกย่องว่ายุคลิด คือ บิดาแห่งวิชาเรขาคณิต
เอกสารประกอบการเรียบเรียง
มหาวิทยาลัยศรีนครินทรวิโรฒ บางเขน. ภาควิชาคณิตศาสตร์. (2530). ประวัตินักคณิตศาสตร์. กรุงเทพฯ: สมาคมคณิตศาสตร์แห่งประเทศไทย ในพระบรมราชูปถัมภ์.
มหาวิทยาลัยสุโขทัยธรรมาธิราช. สาขาศึกษาศาสตร์. (2543). เอกสารการสอนชุดวิชาคณิตศาสตร์ 4 หน่วยที่ 1 – 8 = Mathematics 4. พิมพ์ครั้งที่ 7. นนทบุรี: สำนักพิมพ์มหาวิทยาลัยสุโขทัย
ธรรมาธิราช.
ราช บัณฑิตยสถาน. (2540). ศัพท์คณิตศาสตร์ฉบับราชบัณฑิตยสถาน. พิมพ์ครั้งที่ 7. กรุงเทพฯ: ราชบัณฑิตยสถาน.
สมพร เรืองโชติวิทย์. (2523). รากฐานเรขาคณิต. กรุงเทพฯ: ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ บางเขน.
อัควีร์ มัธยมจันทร์. (2544, พฤศจิกายน). “เปิดปูมประวัติคณิตศาสตร์,” อัพเดท. 17(171): 34 – 37.
Bruno, Leonard C. (1999). Math and Mathematicians: the History of Math Discoveries Around the World. Detroit: U – X – L.
Eves, Haward. (1964). An Introduction to the History of Mathematics. New York: Holt Rinehort and Winston.
O’Connor, J. J. and Robertson, E. F. (Access on September 2002). Euclid of Alexandria (Online). Available: URL http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/
Euclid.html.
—————————————————
หมาย เหตุท้ายหน้า…
บทความ/ความเรียงนี้ เรียบเรียงเพื่อประกอบการเรียนวิชาสำรวจเรขาคณิต (คณ331) ตอนเรียนปริญญาตรี ที่ มศว
อาจารย์ที่สอนวิชานี้ และทำให้ผมหลงใหลในวิชาเรขาคณิต และประวัติศาสตร์ของคณิตศาสตร์ (ซึ่งผมได้ A ทั้งสามวิชา) คือ อาจารย์สุวรรณา คล้ายกระแส
ลูกศิษย์ยังระลึกถึงพระคุณเสมอครับ
และวัน หนึ่งก็อยากกลับไปสายคณิตศาสตร์เหมือนอยากที่อาจารย์อยากให้เรียนครับ
ขอบคุณสำหรับข้อมูลค่ะ
ไม่งั้นแปลเยอะแน่เลย
ครับๆๆ แปลเพิ่มเติมด้วยก็ดีนะครับ