บทนำ
อาร์คิมิดีส (กรีก: Αρχιμήδης; อังกฤษ: Archimedes; 287-212 ปีก่อนคริสตกาล) เป็นนักคณิตศาสตร์ นักดาราศาสตร์ นักปรัชญา นักฟิสิกส์และวิศวกรชาวกรีก เกิดเมื่อ 287 ปีก่อนคริสตกาล ในเมืองซีราคิวส์ ซึ่งในเวลานั้นเป็นนิคมท่าเรือของกรีก แม้จะมีรายละเอียดเกี่ยวกับชีวิตของเขาน้อยมาก แต่เขาก็ได้รับยกย่องว่าเป็นหนึ่งในบรรดานักวิทยาศาสตร์ชั้นนำในสมัยคลาสสิก ความก้าวหน้าในงานด้านฟิสิกส์ของเขาเป็นรากฐานให้แก่วิชาสถิตยศาสตร์ของไหล, สถิตยศาสตร์ และการอธิบายหลักการเกี่ยวกับคาน เขาได้ชื่อว่าเป็นผู้คิดค้นนวัตกรรมเครื่องจักรกลหลายชิ้น ซึ่งรวมไปถึงปั๊มเกลียว (screw pump) ซึ่งได้ตั้งชื่อตามชื่อของเขาด้วย ผลการทดลองในยุคใหม่ได้พิสูจน์แล้วว่า เครื่องจักรที่อาร์คิมิดีสออกแบบนั้นสามารถยกเรือขึ้นจากน้ำหรือสามารถจุดไฟเผาเรือได้โดยอาศัยแถบกระจกจำนวนมาก
อาร์คิมิดีสได้รับยกย่องอย่างกว้างขวางว่าเป็นนักคณิตศาสตร์ที่ยิ่งใหญ่ที่สุดในยุคโบราณ และหนึ่งในนักคณิตศาสตร์ที่ยิ่งใหญ่ที่สุดตลอดกาล เช่นเดียวกับ นิวตัน เกาส์ และ ออยเลอร์ เขาใช้ระเบียบวิธีเกษียณ (Method of Exhaustion) ในการคำนวณพื้นที่ใต้เส้นโค้งพาราโบลาด้วยการหาผลรวมของชุดอนุกรมอนันต์ และได้ค่าประมาณที่ใกล้เคียงที่สุดของค่าพาย เขายังกำหนดนิยามแก่วงก้นหอยของอาร์คิมิดีส ซึ่งได้ชื่อตามชื่อของเขา, คิดค้นสมการหาปริมาตรของรูปทรงที่เกิดจากพื้นผิวที่ได้จากการหมุน และคิดค้นระบบสำหรับใช้บ่งบอกถึงตัวเลขจำนวนใหญ่มากๆ
อาร์คิมิดีสเสียชีวิตในระหว่างการล้อมซีราคิวส์ (ราว 214-212 ปีก่อนคริสตกาล) โดยถูกทหารโรมันคนหนึ่งสังหาร ทั้งๆ ที่มีคำสั่งมาว่าห้ามทำอันตรายแก่อาร์คิมิดีส ซิเซโรบรรยายถึงการเยี่ยมหลุมศพของอาร์คิมิดีสซึ่งมีลูกทรงกลมจารึกอยู่ภายในแท่งทรงกระบอกเหนือหลุมศพ เนื่องจากอาร์คิมิดีสเป็นผู้พิสูจน์ว่า ทรงกลมมีปริมาตรและพื้นที่ผิวเป็น 2 ใน 3 ส่วนของทรงกระบอกที่บรรจุทรงกลมนั้นพอดี (รวมพื้นที่ของฐานทรงกระบอกทั้งสองข้าง) ซึ่งนับเป็นความสำเร็จครั้งยิ่งใหญ่ที่สุดของเขาในทางคณิตศาสตร์
ขณะที่ผลงานประดิษฐ์ของอาร์คิมิดีสเป็นที่รู้จักกันดี แต่งานเขียนทางด้านคณิตศาสตร์กลับไม่ค่อยเป็นที่แพร่หลายนัก นักคณิตศาสตร์จากอเล็กซานเดรียได้อ่านงานเขียนของเขาและนำไปอ้างอิง ทว่ามีการรวบรวมผลงานอย่างแท้จริงเป็นครั้งแรกในช่วง ค.ศ. 530 โดย ไอซิดอร์ แห่งมิเลตุส (Isidore of Miletus) ส่วนงานวิจารณ์งานเขียนของอาร์คิมิดีสซึ่งเขียนขึ้นโดย ยูโตเซียส แห่งอัสคาลอน (Eutocius of Ascalon) ในคริสต์ศตวรรษที่ 6 ช่วยเปิดเผยผลงานของเขาให้กว้างขวางยิ่งขึ้นเป็นครั้งแรก ต้นฉบับงานเขียนของอาร์คิมิดีสหลงเหลือรอดผ่านยุคกลางมาได้ไม่มากนัก แต่ก็เป็นแหล่งข้อมูลสำคัญที่มีอิทธิพลอย่างมากต่อแนวคิดของนักวิทยาศาสตร์ในยุคเรอเนสซองส์ ปี ค.ศ. 1906 มีการค้นพบต้นฉบับงานเขียนของอาร์คิมิดีสที่ไม่เคยมีใครเห็นมาก่อน ใน จารึกของอาร์คิมิดีส (Archimedes Palimpsest) ทำให้เราเห็นมุมมองใหม่ในกลวิธีที่เขาใช้ค้นหาผลลัพธ์ทางคณิตศาสตร์
ประวัติ
ทรงกลม มีปริมาตรและพื้นที่ผิวเป็น 2/3 ของทรงกระบอกที่บรรจุทรงกลมนั้นได้พอดี มีรูปปั้นทรงกลมในทรงกระบอกติดตั้งอยู่ภายในหลุมศพของอาร์คิมิดีส ตามคำขอของเข
อาร์คิมิดีสเกิดราว 287 ปีก่อนคริสตกาล ที่เมืองซีราคิวส์ ซิซิลี ซึ่งเวลานั้นเป็นอาณานิคมปกครองตนเองของมันยากราเซีย วันเกิดของอาร์คิมิดีสนั้นอ้างอิงจากบันทึกของนักประวัติศาสตร์กรีกไบเซนไทน์ จอห์น เซตเซส ซึ่งระบุว่าอาร์คิมิดีสมีอายุ 75 ปี ใน The Sand Reckoner อาร์คิมิดีสบอกว่าบิดาของตนชื่อ ฟิเดียส เป็นนักดาราศาสตร์ ซึ่งไม่ปรากฏข้อมูลใดๆ เลย พลูตาร์คเขียนเอาไว้ใน Parallel Lives ของเขาว่า อาร์คิมิดีสเป็นญาติกับกษัตริย์เฮียโรที่ 2 แห่งซีราคิวส์เพื่อนของอาร์คิมิดีสคนหนึ่งชื่อ เฮราคลีดีส เป็นผู้เขียนหนังสือชีวประวัติของเขา แต่หนังสือเล่มนี้สูญหายไป ทำให้รายละเอียดชีวิตของเขายังเป็นที่คลุมเครือ ดังเช่น ไม่ทราบเลยว่าเขาแต่งงานหรือไม่ หรือมีบุตรหรือไม่ เมื่อยังเยาว์อาร์คิมิดีสอาจได้รับการศึกษาที่อเล็กซานเดรีย เมืองหนึ่งในอาณาจักรอียิปต์โบราณ ร่วมยุคสมัยกับโคนอนแห่งซามอส และเอราทอสเทนีสแห่งไซรีน เพราะเขาเคยอ้างถึงโคนอนแห่งซามอสว่าเป็นสหาย และในงานเขียนของเขา 2 ชิ้น ได้แก่ ระเบียบวิธีเกี่ยวกับทฤษฎีบทกลศาสตร์ (The Method of Mechanical Theorems) และ ปัญหาเรื่องวัวของอาร์คิมิดีส (Cattle Problem) ก็ได้กล่าวถึงเอราทอสเทนีสด้วย
อาร์คิมิดีสเสียชีวิตเมื่อปีที่ 212 ก่อนคริสตกาลระหว่างสงครามพิวนิกครั้งที่สอง เมื่อกองทัพโรมันภายใต้การนำทัดของนายพลมาร์คัส เคลาดิอัส มาร์เซลลัส เข้ายึดเมืองซีราคิวส์ได้หลังจากปิดล้อมอยู่ 2 ปี ตามบันทึกอันโด่งดังของพลูตาร์ค อาร์คิมิดีสกำลังขบคิดแผนภาพทางคณิตศาสตร์ชิ้นหนึ่งระหว่างที่นครถูกยึด ทหารโรมันคนหนึ่งสั่งให้เขาออกมาพบกับนายพลมาร์เซลลัส แต่เขาปฏิเสธโดยบอกว่าต้องแก้ปัญหาให้เสร็จเสียก่อน ทหารผู้นั้นจึงบันดาลโทสะและสังหารอาร์คิมิดีสด้วยดาบ พลูตาร์คยังบันทึกเรื่องเล่าอีกเรื่องหนึ่งว่าอาร์คิมิดีสถูกสังหารขณะพยายามจำนนต่อทหารโรมัน ตามเรื่องหลังนี้ อาร์คิมิดีสถือเครื่องมือทางคณิตศาสตร์ชิ้นหนึ่ง และถูกสังหารเนื่องจากทหารนึกว่ามันเป็นสิ่งมีค่า บันทึกเล่าว่านายพลมาร์เซลลัสโกรธมากเมื่อทราบเรื่องการเสียชีวิตของอาร์คิมิดีส ด้วยถือว่าเขาเป็นทรัพย์สมบัติอันเลอค่ายิ่งทางวิทยาศาสตร์ ทั้งยังออกคำสั่งไปแล้วว่าห้ามทำอันตรายแก่เขาโดยเด็ดขาด
คำพูดสุดท้ายของอาร์คิมิดีสตามที่เชื่อกันคือ “อย่ามากวนวงกลมของข้า” (กรีก: μὴ μου τοὺς κύκλους τάραττε, อังกฤษ: Do not disturb my circles) วงกลมที่พูดถึงนั้นคือภาพคณิตศาสตร์ที่เชื่อว่าเขากำลังศึกษาขบคิดอยู่ขณะที่ถูกทหารโรมันรบกวน คำพูดนี้มักกล่าวถึงในภาษาละตินว่า “Noli turbare circulos meos” แต่ไม่มีหลักฐานที่น่าเชื่อถือว่าอาร์คิมิดีสพูดประโยคนี้จริงๆ และไม่ได้อยู่ในบันทึกของพลูตาร์คด้วย
หลุมศพของอาร์คิมิดีสบรรจุรูปปั้นมากมายที่แสดงถึงการพิสูจน์ทางคณิตศาสตร์ที่เขาโปรดปราน เช่นทรงกลมที่อยู่ภายในทรงกระบอกที่มีความสูงและเส้นผ่านศูนย์กลางเท่ากัน อาร์คิมิดีสได้พิสูจน์ว่าปริมาตรและพื้นที่ผิวของทรงกลมมีขนาดเป็น 2 ใน 3 ของปริมาตรและพื้นที่ผิวของทรงกระบอก (รวมพื้นที่ฐาน) ในปีที่ 75 ก่อนคริสตกาล หลังจากอาร์คิมิดีสเสียชีวิตไปแล้ว 137 ปี ซิเซโรได้เป็นเควสเตอร์แห่งซิซิลี เขาได้ยินเรื่องราวเกี่ยวกับหลุมศพของอาร์คิมิดีส แต่ไม่มีชาวเมืองคนใดบอกตำแหน่งที่ชัดเจนได้ ในเวลาต่อมาเขาพบหลุมศพบริเวณใกล้ประตูอกริเจจนทีนในเมืองซีราคิวส์ซึ่งถูกทิ้งร้างและคลุมไปด้วยสุมทุมพุ่มไม้ ซิเซโรสั่งการให้ทำความสะอาด จึงสามารถมองเห็นรอยสลักและถ้อยคำจารึก หลุมศพแห่งหนึ่งที่ค้นพบในสนามหญ้าของโรงแรมหนึ่งในซีราคิวส์เมื่อต้นคริสต์ทศวรรษ 1960 อ้างตัวว่าเป็นหลุมศพของอาร์คิมิดีส แต่ถึงปัจจุบันนี้ ก็ไม่มีใครทราบตำแหน่งที่แท้จริงแล้ว
บันทึกชีวประวัติของอาร์คิมิดีสฉบับมาตรฐานเขียนขึ้นโดยนักประวัติศาสตร์โรมันหลายคนหลังจากที่เขาเสียชีวิตไปแล้วเป็นเวลานาน บันทึกเรื่องการยึดเมืองซีราคิวส์ใน Universal History ของโพลิบิอุสเขียนขึ้นประมาณ 70 ปีหลังการเสียชีวิตของอาร์คิมิดีส และต่อมาถูกใช้เป็นแหล่งข้อมูลของพลูตาร์คและลิวี เนื้อหาในบันทึกนี้ให้ข้อมูลเกี่ยวกับชีวิตของอาร์คิมิดีสน้อยมาก ส่วนใหญ่จะกล่าวถึงการใช้เครื่องจักรยนต์ในสงคราม ซึ่งอาร์คิมิดีสสร้างขึ้นเพื่อใช้ป้องกันเมือง
การค้นพบและสิ่งประดิษฐ์
มงกุฎทองคำ

อาร์คิมิดีสอาจใช้หลักการของการลอยตัว ในการพิสูจน์ว่ามงกุฎทองคำมีความหนาแน่นต่ำกว่าทองคำแท่ง
เรื่องของมงกุฏทองคำไม่ปรากฏอยู่ในผลงานของอาร์คิมิดีสที่รู้จักกัน ยิ่งกว่านั้น กลวิธีที่บรรยายเอาไว้ยังทำให้เกิดความสงสัยเกี่ยวกับความแม่นยำอย่างยิ่งยวดในการตรวจวัดค่าของการแทนที่ของน้ำ บางทีอาร์คิมิดีสอาจจะค้นหาวิธีการประยุกต์หลักการที่รู้จักกันในสถิตยศาสตร์ของไหลว่าด้วยเรื่องหลักการของอาร์คิมิดีส ซึ่งเขาบรรยายไว้ในตำราเรื่อง On Floating Bodies หลักการนี้บอกว่า วัตถุที่จุ่มลงในของไหลจะมีแรงลอยตัวเท่ากับน้ำหนักของของไหลที่มันเข้าไปแทนที่ ด้วยหลักการนี้ จึงเป็นไปได้ที่จะเปรียบเทียบความหนาแน่นของมงกุฎทองคำกับทองคำแท่ง โดยการถ่วงมงกุฎทองคำกับทองคำที่ใช้อ้างอิง จากนั้นจุ่มอุปกรณ์ทั้งหมดลงในน้ำ ถ้ามงกุฎมีความหนาแน่นน้อยกว่าทองคำแท่ง มันจะแทนที่น้ำด้วยปริมาตรที่มากกว่า ทำให้มีแรงลอยตัวมากกว่าทองคำอ้างอิง แรงลอยตัวที่แตกต่างกันจะทำให้เครื่องถ่วงไม่สมดุลกาลิเลโอเห็นว่าวิธีการนี้ “อาจเป็นวิธีการเดียวกันกับที่อาร์คิมิดีสใช้ เนื่องจากมีความแม่นยำสูง จึงอาจเป็นวิธีทดลองที่อาร์คิมิดีสค้นพบด้วยตนเอง”
เกลียวอาร์คิมิดีส

เกลียวอาร์คิมิดีส สามารถขนย้ายน้ำไปได้อย่างมีประสิทธิภาพ
กรงเล็บอาร์คิมิดีส
กรงเล็บอาร์คิมิดีส คืออาวุธชนิดหนึ่งที่เขากล่าวว่าออกแบบมาเพื่อใช้ป้องกันเมืองซีราคิวส์ บ้างก็รู้จักในชื่อ “เครื่องเขย่าเรือ” ประกอบด้วยแขนกลลักษณะคล้ายเครนโดยมีขอโลหะขนาดใหญ่หิ้วเอาไว้ด้านบน เมื่อปล่อยกรงเล็บนี้ใส่เรือที่มาโจมตี แขนกลจะเหวี่ยงตัวกลับขึ้นด้านบน ยกเรือขึ้นจากน้ำและบางทีก็ทำให้เรือจม มีการทดลองยุคใหม่เพื่อทดสอบความเป็นไปได้ของกรงเล็บนี้ และในสารคดีทางโทรทัศน์ปี 2005 ชื่อเรื่องว่า Superweapons of the Ancient World ได้สร้างกรงเล็บเช่นนี้ขึ้นมา ได้ข้อสรุปว่ามันเป็นเครื่องมือที่ใช้ได้ผลจริงๆ[25][26]
รังสีความร้อนของอาร์คิมิดีส
อาร์คิมิดีสอาจใช้กระจกในการรวมแสงเหมือนจานสะท้อนแบบพาราโบลา ในการเผากองเรือโรมันที่ยกมาโจมตีซีราคิวส์
เมื่อคริสต์ศตวรรษที่ 2 ลูเชียนเขียนว่าระหว่างการล้อมซีราคิวส์ (214-212 ปีก่อนคริสตกาล) อาร์คิมิดีสทำลายเรือฝ่ายศัตรูด้วยไฟ หลายศตวรรษต่อมา แอนธีมิอุสแห่งทรอลเลส เอ่ยถึงเลนส์รวมแสงว่าเป็นอาวุธของอาร์คิมิดีส อุปกรณ์นี้บางครั้งก็เรียกว่า “รังสีความร้อนของอาร์คิมิดีส” ใช้ในการรวมจุดโฟกัสของแสงอาทิตย์ส่องไปยังเรือที่รุกราน ทำให้เรือเหล่านั้นติดไฟ
อาวุธดังกล่าวนี้เป็นหัวข้อถกเถียงกันเกี่ยวกับผู้คิดค้นมาเป็นเวลานานจนถึงยุคเรอเนสซองส์ เรอเน เดส์คาร์ตส์เห็นว่าเป็นเรื่องหลอก ขณะที่นักวิจัยยุคใหม่หลายคนพยายามสร้างมันขึ้นมาใหม่โดยใช้เครื่องมือเพียงเท่าที่มีอยู่ในยุคของอาร์คิมิดีส ความเห็นบางส่วนเห็นว่า แผงโล่ทองแดงหรือโล่สำริดขัดมันปลาบจำนวนมากสามารถใช้แทนกระจกและโฟกัสแสงอาทิตย์ส่องไปบนเรือ ซึ่งอาจใช้หลักการของจานสะท้อนแบบพาราโบลาในลักษณะที่คล้ายคลึงกับเตารังสีแสงอาทิตย์
ปี ค.ศ. 1973 มีการทดสอบรังสีความร้อนของอาร์คิมิดีสโดยนักวิทยาศาสตร์ชาวกรีกชื่อ โยแอนนิส ซัคคัส ทำการทดลองที่ฐานทัพเรือสการามากัส (skaramagas) แถบนอกเมืองเอเธนส์ ใช้กระจก 70 ชุด แต่ละชุดมีขนาดราว 5×3 ฟุต เคลือบผิวด้วยทองแดง แผงกระจกพุ่งเป้าไปที่แผ่นไม้บนเรือโรมันที่อยู่ห่างออกไปประมาณ 160 ฟุต เมื่อปรับโฟกัสกระจกให้แม่นยำ เรือก็ลุกเป็นไฟในเวลาเพียงไม่กี่วินาที เรือไม้นั้นทาผิวด้วยยางไม้ ซึ่งอาจช่วยให้ติดไฟได้ง่ายขึ้น
เดือนตุลาคม ค.ศ. 2005 นักศึกษากลุ่มหนึ่งจากสถาบันเทคโนโลยีแมสซาชูเซตส์ ทำการทดลองด้วยกระจกขนาด 1 ฟุต 127 แผ่น มุ่งเป้าไปที่เรือไม้ที่อยู่ห่างออกไป 100 ฟุต เรือสามารถติดไฟได้ แต่ก็เมื่อท้องฟ้าปราศจากเมฆและเรือนั้นอยู่นิ่งๆ ประมาณ 10 นาที จึงสรุปได้ว่าเครื่องมือนี้เป็นอาวุธที่เป็นไปได้ภายใต้เงื่อนไข กลุ่มนักศึกษาเอ็มไอทีทำการทดลองซ้ำในรายการโทรทัศน์ MythBusters โดยใช้เรือตกปลาทำจากไม้ในซานฟรานซิสโกเป็นเป้าหมาย เรือนั้นไหม้เกรียมเป็นถ่าน มีเปลวไฟจำนวนเล็กน้อย การที่ไม้จะลุกเป็นไฟจะต้องมีอุณหภูมิสูงถึงจุดติดไฟที่ประมาณ 300 °C (570 °F)
เมื่อรายการ MythBusters ออกอากาศผลการทดลองที่ซานฟรานซิสโกเมื่อเดือนมกราคม ค.ศ. 2006 ผลสรุปเรื่องคำกล่าวอ้างนั้นตกเป็น “ล้มเหลว” เนื่องจากระยะเวลาที่ต้องใช้กับเงื่อนไขทางสภาวะอากาศที่จำเป็นต่อการลุกไหม้ รายการยังชี้ประเด็นว่าเมืองซีราคิวส์ตั้งหันหน้าสู่ทะเลทางตะวันออก ดังนั้นกองเรือโรมันจะต้องเข้าโจมตีระหว่างช่วงเช้าเพื่อจะสามารถใช้กระจกรวมแสงได้ผลดีที่สุด MythBusters ยังชี้อีกว่าในระยะที่ใกล้ขนาดนั้น การใช้อาวุธแบบดั้งเดิม เช่นการยิงธนูไฟหรือใช้เครื่องยิงหิน ยังจะทำได้ง่ายกว่าการจุดไฟแบบนี้เสียอีก
เดือนธันวาคม ค.ศ. 2010 รายการ MythBusters ภาคพิเศษโดยบารัค โอบามา ในตอนที่ชื่อว่า President’s Challenge ได้ทำการทดลองรังสีความร้อนนี้ซ้ำอีกครั้ง มีการทดลองหลายครั้ง รวมถึงการทดสอบขนาดใหญ่โดยใช้เด็กนักเรียนถึง 500 คนช่วยกันส่องกระจกไปยังเรือโรมันที่ระยะห่าง 400 ฟุต การทดลองทุกครั้งไม่สามารถทำอุณหภูมิได้ถึง 210 °C เพื่อให้ติดไฟได้เลย ผลลัพธ์จึงสรุปว่า “ล้มเหลว” อีกครั้ง ทางรายการสรุปว่า ผลกระทบประการอื่นจากการใช้กระจกอาจทำให้ทหารบนกองเรือตาพร่าลาย มองไม่เห็น สับสนมึนงง หรือช่วยหันเหความสนใจมากกว่า
[แก้]การค้นพบและสิ่งประดิษฐ์อื่นๆ
แม้อาร์คิมิดีสมิใช่ผู้ค้นพบคาน แต่เขาเป็นผู้อธิบายถึงหลักการของมันในงานเขียนของเขาเรื่อง On the Equilibrium of Planes มีบันทึกก่อนหน้านี้ที่เกี่ยวกับคานพบในสำนักศึกษาเพริพาเททิก(Peripatetic school) ของลูกศิษย์ของอริสโตเติล และมีบางส่วนปรากฏในงานของอาร์คีตัสด้วย ตามบันทึกของพัพพัสแห่งอเล็กซานเดรีย งานของอาร์คิมิดีสเกี่ยวกับคานเป็นที่มาของประโยคอันโด่งดังว่า “หาที่ยืนให้ฉันสิ แล้วฉันจะเคลื่อนโลกให้” (กรีก: δῶς μοι πᾶ στῶ καὶ τὰν γᾶν κινάσω) พลูตาร์คเคยบรรยายไว้ว่าอาร์คิมิดีสออกแบบระบบชักรอกอย่างไร ซึ่งทำให้กลาสีสามารถใช้หลักการของคานในการยกวัตถุที่หนักเกินจะยกไหว อาร์คิมิดีสยังได้รับยกย่องในฐานะผู้พัฒนาเครื่องยิงหินให้มีกำลังและความแม่นยำมากขึ้น รวมถึงการประดิษฐ์มาตรวัดออดอมิเตอร์ระหว่างสงครามพิวนิกครั้งที่หนึ่ง ออดอมิเตอร์นี้มีการบรรยายไว้ว่ามีลักษณะเหมือนเกวียนที่มีกลไกฟันเฟืองคอยทิ้งลูกบอลลงในภาชนะบรรจุเมื่อเดินทางไปได้ทุกระยะหนึ่งไมล์
ซิเซโร (106-43 ปีก่อนคริสตกาล) กล่าวถึงอาร์คิมิดีสสั้นๆ ในงานเขียนประเภทบทสนทนาของเขาเรื่อง De re publica ซึ่งเป็นบทสนทนาสมมุติที่เกิดขึ้นในปี 129 ก่อนคริสตกาล หลังจากการปิดล้อมซีราคิวส์เมื่อปีที่ 212 ก่อนคริสตกาลแล้ว เล่ากันว่านายพลมาร์คัส เคลาดิอัส มาร์เซลลัส นำเอาเครื่องกลไก 2 ชิ้นที่ใช้ช่วยในการศึกษาดาราศาสตร์กลับไปยังโรม เครื่องกลไกนี้ช่วยแสดงการเคลื่อนที่ของดวงอาทิตย์ ดวงจันทร์ และดาวเคราะห์ 5 ดวง ซิเซโรระบุถึงเครื่องกลไกที่คล้ายคลึงกันนี้ว่าออกแบบโดยทาเลสแห่งไมเลทัส และยูโดซุสแห่งคไนดัส ในงานเขียนนั้นกล่าวว่า มาร์เซลลัสเก็บเครื่องมือชิ้นหนึ่งเอาไว้เป็นของสะสมส่วนตัวจากซีราคิวส์ ส่วนอีกชิ้นหนึ่งส่งไปยังวิหารแห่งความบริสุทธิ์ในกรุงโรม ตามงานเขียนของซิเซโร ไกอัส ซุพิซิอุส กัลลัส ได้สาธิตเครื่องกลไกของมาร์เซลลัสให้แก่ ลูเชียส ฟูเรียส ฟิลุส ซึ่งบรรยายเอาไว้ว่า
![]() |
|
![]() |
นั่นคือคำบรรยายถึงท้องฟ้าจำลองหรือแบบจำลองวงโคจรดาวเคราะห์นั่นเอง พัพพัสแห่งอเล็กซานเดรียระบุว่า อาร์คิมิดีสได้เขียนต้นฉบับลายมือชุดหนึ่ง (ปัจจุบันสูญหายไปแล้ว) เกี่ยวกับการก่อสร้างกลไกเหล่านี้เอาไว้ งานวิจัยยุคใหม่ในสาขานี้ได้มุ่งความสนใจไปที่กลไกอันติคือเธรา ซึ่งเป็นเครื่องมืออีกชนิดหนึ่งจากยุคคลาสสิกที่อาจจะออกแบบขึ้นมาเพื่อวัตถุประสงค์เดียวกัน กลไกการสร้างประเภทนี้จำเป็นต้องใช้ความรู้อันซับซ้อนลึกซึ้งเกี่ยวกับเฟืองขับ ซึ่งครั้งหนึ่งเคยคิดกันว่าอยู่พ้นจากเทคโนโลยีที่เป็นไปได้ในยุคโบราณ แต่การค้นพบกลไกอันติคือเธราในปี ค.ศ. 1902 ช่วยยืนยันว่าเครื่องมือประเภทนี้เป็นที่รู้จักกันตั้งแต่ยุคกรีกโบราณแล้ว
งานด้านคณิตศาสตร์
อาร์คิมิดีสมักได้รับยกย่องในฐานะผู้ออกแบบสิ่งประดิษฐ์กลไก แต่เขาก็มีส่วนร่วมในวิทยาการด้านคณิตศาสตร์ไม่น้อย พลูตาร์คเขียนไว้ว่า : “เขาทุ่มเทความรักและความทะเยอทะยานทั้งมวลไว้กับการเสี่ยงโชคอันบริสุทธิ์ ซึ่งปราศจากความจำเป็นแห่งมารยาใดๆ ในชีวิต”
อาร์คิมิดีสใช้ระเบียบวิธีเกษียณในการประมาณค่าของ π
อาร์คิมิดีสสามารถใช้แนวคิดกณิกนันต์ในวิธีที่คล้ายคลึงกับแคลคูลัสเชิงปริพันธ์ของยุคใหม่ ด้วยการพิสูจน์แย้ง เขาสามารถหาคำตอบของปัญหาที่มีระดับความแม่นยำสูงมากๆ ได้โดยกำหนดขอบเขตที่คำตอบนั้นตั้งอยู่ เทคนิคนี้รู้จักกันในชื่อ ระเบียบวิธีเกษียณ (Method of exhaustion) ซึ่งเขานำมาใช้ในการหาค่าประมาณของ π (พาย) วิธีการคือวาดภาพหลายเหลี่ยมขนาดใหญ่กว่าอยู่ข้างนอกวงกลม และรูปหลายเหลี่ยมขนาดเล็กกว่าอยู่ข้างในวงกลม ยิ่งจำนวนด้านของรูปหลายเหลี่ยมเพิ่มขึ้น มันก็จะใกล้เคียงกับขอบของวงกลมมากยิ่งขึ้น เมื่อรูปหลายเหลี่ยมมีจำนวนด้านถึง 96 ด้าน เขาคำนวณความยาวของแต่ละด้านรวมกันและแสดงถึงค่าของ π ที่อยู่ระหว่าง 3 (ประมาณ 3.1429) กับ 3
(ประมาณ 3.1408) เทียบกับค่าที่แท้จริงของ π ที่ประมาณ 3.1416 เขายังพิสูจน์ด้วยว่าพื้นที่ของวงกลมนั้นเท่ากับ π คูณกับค่ากำลังสองของรัศมีของวงกลม ในงานเขียนเรื่อง On the Sphere and Cylinder อาร์คิมิดีสได้วางหลักเกณฑ์ของคุณสมบัติแบบอาร์คิมิดีสของจำนวนจริง ว่าค่ากนิกนันต์ใดๆ เมื่อนำมาบวกเข้ากับตัวเองเป็นจำนวนครั้งมากพอ จะมากกว่าค่าอนันต์ของค่านั้น
ในงานเขียน Measurement of a Circle อาร์คิมิดีสให้ค่ารากที่สองของ 3 ไว้ว่าอยู่ระหว่าง (ประมาณ 1.7320261) กับ
(ประมาณ 1.7320512) โดยค่าที่แท้จริงคือประมาณ 1.7320508 ซึ่งเป็นค่าประมาณการที่ใกล้เคียงมาก เขาบอกค่านี้ออกมาโดยไม่ได้ให้คำอธิบายว่าใช้ระเบียบวิธีใดในการคิด วิธีการทำงานของอาร์คิมิดีสเช่นนี้ทำให้ จอห์น วอลลิส ระบุว่าเขากำลัง “ปกปิดวิธีการในการหาคำตอบ ราวกับว่าไม่ต้องการให้คนรุ่นหลังได้ล่วงรู้ แต่กลับขู่เข็ญให้ยอมรับผลลัพธ์นั้นแต่โดยดี”
ในงานเขียน The Quadrature of the Parabola อาร์คิมิดีสพิสูจน์ว่า พื้นที่ภายใต้เขตล้อมของพาราโบลากับเส้นตรงหนึ่งเส้น มีค่าเท่ากับ เท่าของพื้นที่สามเหลี่ยมในเขตเดียวกันนั้น ดังแสดงในรูปทางขวานี้ เขาอธิบายผลลัพธ์ของปัญหานี้ด้วยอนุกรมเรขาคณิตอนันต์ซึ่งมีอัตราส่วนร่วม
:
พจน์แรกของอนุกรมนี้คือพื้นที่ของสามเหลี่ยม พจน์ที่สองเป็นผลรวมของพื้นที่ของสามเหลี่ยม 2 ชิ้นที่มีฐานเท่ากับด้านประกอบที่เล็กกว่า และเป็นเช่นนี้ไปเรื่อยๆ การพิสูจน์นี้ใช้การแปรค่าของอนุกรมอนันต์ที่ได้ผลรวมเข้าใกล้
ในงานเขียน The Sand Reckoner อาร์คิมิดีสทำการคำนวณจำนวนเม็ดทรายที่เอกภพสามารถรองรับได้ การทำเช่นนั้น เขาได้ท้าทายข้อสังเกตว่าจำนวนของเม็ดทรายนั้นมากจนเกินกว่าจะนับได้ เขาเขียนว่า : “มีบางคน เช่นพระเจ้าเกโล (พระเจ้าเกโลที่ 2 โอรสของพระเจ้าเฮียโรที่ 2 แห่งซีราคิวส์) ซึ่งคิดว่าจำนวนของเม็ดทรายนั้นมากมายจนเป็นอนันต์ และในความหมายของทรายนั้น ข้ามิได้หมายถึงที่มีอยู่ในซีราคิวส์หรือส่วนที่เหลือของซิซิลี แต่รวมถึงส่วนที่พบในท้องถิ่นทุกหนแห่งไม่ว่ามีคนอยู่หรือไม่” ในการแก้ปัญหานี้ อาร์คิมิดีสได้ประดิษฐ์ระบบในการนับขึ้นโดยอ้างอิงจาก มีเรียด คำนี้มาจากภาษากรีกว่า murias หมายถึงจำนวน 10,000 เขาเสนอระบบจำนวนแบบหนึ่งโดยใช้การคูณมีเรียดกับมีเรียด (100 ล้าน) และสรุปว่าจำนวนของเม็ดทรายที่ต้องใช้ในการเติมเอกภพทั้งหมดให้เต็ม เท่ากับ 8 วิจินทิลเลียน หรือ 8 x 1063
ตำรา
งานเขียนของอาร์คิมิดีสเขียนไว้ในภาษากรีกดอริค (Doric Greek) ซึ่งเป็นภาษาซีราคิวส์โบราณ[46] งานเขียนส่วนมากไม่สามารถรอดมาถึงปัจจุบันเหมือนอย่างงานของยูคลิด ตำรา 7 เล่มของเขาเป็นที่รู้จักก็ด้วยการถูกนักเขียนคนอื่นๆ กล่าวอ้างถึงเท่านั้น พัพพัสแห่งอเล็กซานเดรียพูดถึง On Sphere-Making และงานอื่นๆ เกี่ยวกับรูปหลายเหลี่ยม ขณะที่ธีออนแห่งอเล็กซานเดรียอ้างถึงใจความสำคัญหนึ่งเกี่ยวกับการหักเหของแสงจากงานเขียนชื่อ Catoptricab ตลอดช่วงชีวิตของอาร์คิมิดีส เขาทำให้งานของตนเป็นที่รู้จักผ่านการสนทนาอภิปรายกับนักคณิตศาสตร์คนอื่นๆ ในอเล็กซานเดรีย ปี ค.ศ. 530 สถาปนิกชาวไบแซนไทน์คนหนึ่งชื่อ อิซิดอร์แห่งมิเลตุส ได้รวบรวมงานเขียนของอาร์คิมิดีสเข้าด้วยกัน และมีการวิจารณ์ผลงานของอาร์คิมิดีสจากยูโตเซียสแห่งอัสคาลอนในคริสต์ศตวรรษที่ 6 ซึ่งทำให้ผลงานของเขาเป็นที่รู้จักแพร่หลาย มีการแปลงานเขียนของอาร์คิมิดีสไปเป็นภาษาอารบิกโดย Thābit ibn Qurra (ค.ศ. 836-901) และภาษาละตินโดย Gerard แห่งครีโมนา (ค.ศ. 1114-1187) ระหว่างยุคเรอเนสซองส์มีการตีพิมพ์ Editio Princeps (เอดิชั่นแรก) ในกรุงเบเซิลเมื่อปี ค.ศ. 1544 โดย โจฮันน์ แฮร์เวเกน โดยแสดงงานเขียนของอาร์คิมิดีสทั้งในภาษากรีกและละติน[47] ประมาณปี ค.ศ. 1586 กาลิเลโอ กาลิเลอี คิดค้นสมดุลของสถิตยศาสตร์ของไหลเพื่อใช้ในการชั่งน้ำหนักโลหะในอากาศและในน้ำ โดยเห็นชัดว่าได้รับแรงบันดาลใจจากงานของอาร์คิมิดีส
ผลงานที่รอดมา

คำกล่าวอันโด่งดังของอาร์คิมิดีสเกี่ยวกับคาน : หาที่ให้ฉันยืนสิ แล้วฉันจะเคลื่อนโลกให้
- ว่าด้วยดุลยภาพของระนาบ (On the Equilibrium of Planes) หรือ จุดศูนย์ถ่วงของระนาบ (Gravity of Planes)
- เขียนไว้สองเล่ม เล่มแรกมี 15 บทกับสัจพจน์ 7 ข้อ ส่วนเล่มที่ 2 มี 10 บท งานเขียนชิ้นนี้ อาร์คิมิดีสกล่าวถึงกฎของคาน โดยระบุว่า “น้ำหนักบนคานจะอยู่ในสมดุลที่ระยะห่างจากจุดหมุนเป็นอัตราส่วนผกผันกับน้ำหนัก”
- อาร์คิมิดีสใช้หลักการนี้ในการหาทางคำนวณพื้นที่และจุดศูนย์กลางมวลของวัตถุรูปทรงต่างๆ กัน ซึ่งรวมถึงทรงสามเหลี่ยม สี่เหลี่ยมด้านขนานและพาราโบลา[49]
- ว่าด้วยการวัดวงกลม (On Measurement of the Circle)
- เป็นงานสั้นๆ ประกอบด้วย 3 บท เขียนในรูปแบบการสนทนากับโดซิเธอุสแห่งเพลูเซียม ผู้เป็นศิษย์ของโคนอนแห่งซามอส ในบทที่ 2 อาร์คิมิดีสแสดงให้เห็นว่า ค่า π (pi) มีค่ามากกว่า
แต่น้อยกว่า
ตัวเลขหลังนี้เป็นตัวเลขที่ถูกนำมาใช้เป็นค่าประมาณการของ π มาตลอดยุคกลาง และยังคงเป็นที่นิยมใช้กันอยู่ในปัจจุบันเมื่อต้องการคำนวณอย่างคร่าวๆ
- ว่าด้วยเส้นเกลียว (On Spirals)
- งานชิ้นนี้มี 28 บท และยังคงกล่าวถึงโดซิธีอุส ตำรานี้กล่าวถึงสิ่งที่ปัจจุบันเรียกชื่อว่า วงก้นหอยอาร์คิมิดีส (Archimedean spiral) นั่นคือ โลคัสของจุดที่เคลื่อนที่ (ด้วยความเร็วคงที่) ไปตามแนวเส้นตรง (ที่กำลังหมุนรอบตัวเองอยู่ด้วยความเร็วเชิงมุมคงที่) ณ จุดใดๆ ซึ่งแสดงเป็นค่าคู่อันดับเชิงมุมได้ว่า (r, θ) สามารถแสดงเป็นสมการได้ดังนี้
- โดย a และ b เป็นจำนวนจริง นี่เป็นตัวอย่างยุคแรกๆ ของเส้นโค้งทางกล (เส้นโค้งที่เกิดจากจุดเคลื่อนที่) ในความเห็นของนักคณิตศาสตร์ชาวกรีก
- ว่าด้วยทรงกลมและทรงกระบอก (On the Sphere and the Cylinder)
- เขียนไว้สองเล่ม โดยเป็นการเขียนถึงโดซิธีอุส อาร์คิมิดีสเขียนถึงผลงานซึ่งเขาภาคภูมิใจมากที่สุด นั่นคือความสัมพันธ์ระหว่างทรงกลมกับทรงกระบอกที่มีความสูงและเส้นผ่านศูนย์กลางเท่ากัน ปริมาตรของทรงกลมคือ
πr3 ส่วนปริมาตรของทรงกระบอกเท่ากับ 2πr3 พื้นที่ผิวของทรงกลมคือ 4πr2 ส่วนพื้นที่ผิวของทรงกระบอกเท่ากับ 6πr2 (รวมพื้นที่ฐานทั้งสองด้าน) โดยที่ r คือรัศมีของทรงกลมและทรงกระบอกนั้น ทรงกลมจะมีปริมาณเป็น 2/3 เท่าของปริมาตรทรงกระบอก ในขณะเดียวกันก็มีพื้นที่ผิวเป็น 2/3 เท่าของพื้นที่ผิวทรงกระบอกด้วย มีรูปปั้นทรงกลมและทรงกระบอกติดตั้งอยู่ในหลุมศพของอาร์คิมิดีสตามคำขอของเขาเอง
- ว่าด้วยทรงกรวย และทรงกลม (On Connoids and Spheroids)
- เป็นงานประกอบด้วย 32 บทเขียนถึงโดซิธีอุส อาร์คิมิดีสคำนวณพื้นที่และปริมาตรของเสี้ยวทรงตัน ที่เกิดจากการหมุนภาคตัดกรวย (วงกลม วงรี พาราโบลา หรือ ไฮเพอร์โบลา) รอบแกนของตัวเอง
- ว่าด้วยเทหวัตถุลอย (On Floating Bodies)
- ในช่วงแรกของตำรานี้ อาร์คิมิดีสกล่าวถึงกฎสมดุลของของไหล (หรือสถิตยศาสตร์ของไหล) และพิสูจน์ว่าน้ำจะคงรูปทรงเป็นทรงกลมรอบๆ จุดศูนย์กลางของแรงโน้มถ่วง นี่อาจเป็นความพยายามอธิบายทฤษฎีของนักดาราศาสตร์ชาวกรีกร่วมสมัยกับเขา เช่น เอราทอสเทนีส ที่บอกว่าโลกมีรูปร่างกลม ของไหลในความหมายของอาร์คิมิดีสนั้นไม่ได้มีแรงโน้มถ่วงในตัวเอง เนื่องจากเขาตั้งสมมุติฐานว่ามีจุดอยู่จุดหนึ่งซึ่งทุกสิ่งตกลงไปหาเพื่อทำให้เกิดรูปทรงแบบทรงกลม
- ในช่วงที่สอง เขาคำนวณตำแหน่งสมดุลของภาคตัดของรูปทรงพาราโบลา ซึ่งดูเหมือนเป็นภาพอุดมคติของรูปทรงของท้องเรือ ภาคตัดของเขาบางส่วนจะมีฐานอยู่ใต้น้ำ และยอดอยู่เหนือน้ำ ในลักษณะเดียวกันกับการลอยตัวของภูเขาน้ำแข็ง หลักการของอาร์คิมิดีสว่าด้วยการลอยตัว ถูกระบุเอาไว้ในงานเขียนชิ้นนี้ โดยระบุว่า
![]() |
|
![]() |
- เสี้ยวของพาราโบลา (The Quadrature of the Parabola)
- เป็นงานเขียน 24 บทเขียนถึงโดซิธีอุส อาร์คิมิดีสใช้ระเบียบวิธี 2 ชนิดพิสูจน์ว่า พื้นที่ของส่วนใดๆ ของพาราโบลากับเส้นตรง จะเท่ากับ 4/3 ของพื้นที่สามเหลี่ยมที่มีเส้นฐานและความสูงเท่ากับส่วนเสี้ยวนั้น เขาสามารถพิสูจน์ได้สำเร็จโดยการคำนวณค่าอนุกรมเรขาคณิตที่มีผลรวมถึงอนันต์ด้วยอัตราส่วน
- (O)stomachion
- เป็นงานปริศนาชิ้นส่วน คล้ายคลึงกับแทนแกรม มีตำราที่เอ่ยถึงงานลักษณะนี้ที่สมบูรณ์ยิ่งกว่า ในสมุดบันทึกของอาร์คิมิดีส (Archimedes palimpsest) อาร์คิมิดีสคำนวณพื้นที่ของชิ้นส่วน 14 ชิ้นที่สามารถประกอบกันเป็นรูปสี่เหลี่ยมจตุรัส งานวิจัยของ ดร.เรวีล เนตซ์ แห่งมหาวิทยาลัยสแตนฟอร์ดที่เผยแพร่ในปี ค.ศ. 2003 โต้แย้งว่า อาร์คิมิดีสพยายามจะบ่งบอกจำนวนวิธีที่ชิ้นส่วนเหล่านี้สามารถรวมกันเป็นรูปทรงสี่เหลี่ยมจัตุรัสได้ ดร.เนตซ์ คำนวณว่าการประกอบชิ้นส่วนเหล่านี้เป็นสี่เหลี่ยมจัตุรัสสามารถทำได้ 17,152 วิธี หากไม่นับการหมุนรูปและการสะท้อนรูปแล้วจะได้จำนวนวิธีจัดเรียงทั้งสิ้น 536 วิธี ปริศนานี้เป็นตัวอย่างการแก้ปัญหาในยุคเริ่มแรกของคณิตศาสตร์เชิงการจัด
- ต้นกำเนิดของชื่อดั้งเดิมของปริศนาลักษณะนี้ยังไม่ชัดเจนนัก บ้างก็ว่ามันมาจากคำภาษากรีกโบราณเกี่ยวกับคอหรือคอหอย คือ stomachos (στόμαχος) เอาโซเนียสเรียกปริศนาชนิดนี้ว่าOstomachion ซึ่งเป็นคำประสมในภาษากรีก มาจากรากศัพท์ ὀστέον (osteon, กระดูก) และ μάχη (machē – ต่อสู้) นอกจากนี้ ปริศนานี้ยังเป็นที่รู้จักในชื่อว่า กระเป๋าของอาร์คิมิดีส หรือ กล่องของอาร์คิมิดีส
- ปัญหาเรื่องวัวของอาร์คิมิดีส (Archimedes’ cattle problem)
- ก็อตต์โฮลด์ อีฟราม เลสซิง เป็นผู้ค้นพบงานนี้ในต้นฉบับลายมือภาษากรีก ประกอบด้วยบทกวี 44 บรรทัด ที่ห้องสมุดเฮอร์ซอก ออกัสต์ ในเมือง Wolfenbüttel ประเทศเยอรมัน เมื่อปี ค.ศ. 1773 เป็นงานเขียนถึงเอราทอสเทนีสและนักคณิตศาสตร์คนอื่นๆ ในอเล็กซานเดรีย อาร์คิมิดีสท้าทายคนเหล่านั้นให้นับจำนวนวัวที่อยู่ในคอกสัตว์ของพระอาทิตย์ โดยแก้ปัญหาจำนวนจากสมการของไดโอแฟนทัสมีปัญหาลักษณะนี้ในรูปแบบที่ยากกว่าซึ่งต้องหาคำตอบออกมาเป็นเลขยกกำลังสอง ผู้แก้ปัญหานี้ได้เป็นคนแรกคือ เอ. อัมทอร์ ในปี ค.ศ. 1880 คำตอบที่ได้เป็นจำนวนขนาดใหญ่มาก คือประมาณ 7.760271 x 10206544
- นักคำนวณทราย (The Sand-Rekoner)
- เป็นตำราสั้นๆ อธิบายระบบความคิดเรื่องจำนวนของกรีก อาร์คิมิดีสนับจำนวนของเม็ดทราบที่จะถมจนเต็มจักรวาล ในงานเขียนชิ้นนี้ยังกล่าวถึงระบบสุริยะตามทฤษฎีดวงอาทิตย์เป็นศูนย์กลางจักรวาล ซึ่งเสนอโดยอริสทาร์คัสแห่งซามอส รวมถึงแนวคิดร่วมสมัยอื่นๆ เกี่ยวกับขนาดของโลก และระยะห่างระหว่างวัตถุท้องฟ้าต่างๆ อาร์คิมิดีสใช้ระบบจำนวนที่สร้างจากการยกกำลังของมีเรียด และสรุปว่าจำนวนเม็ดทราบที่จะถมจักรวาลได้คือ 8 x 1063 ตามระบบจำนวนยุคใหม่ ในจดหมายนำเรื่องของงานเขียนนี้ ระบุไว้ว่าบิดาของอาร์คิมิดีสเป็นนักดาราศาสตร์ ชื่อว่า ฟิเดียส นักคำนวณทราย หรือ Psammitesเป็นงานเขียนที่เหลือรอดเพียงชิ้นเดียวที่อาร์คิมิดีสอภิปรายถึงมุมมองด้านดาราศาสตร์ของเขา
- ระเบียบวิธีเกี่ยวกับทฤษฎีบทกลศาสตร์ (The Method of Mechanical Theorems)
- แต่เดิมเชื่อกันว่าตำรานี้สูญหายไปแล้ว จนกระทั่งมีการค้นพบสมุดบันทึกของอาร์คิมิดีสในปี ค.ศ. 1906 ในงานเขียนนี้ อาร์คิมิดีสใช้แนวคิดกณิกนันต์ แสดงให้เห็นว่า การแตกรูปภาพหนึ่งๆ ออกเป็นชิ้นส่วนเล็กๆ จำนวนนับไม่ถ้วน สามารถใช้หาพื้นที่หรือปริมาตรได้อย่างไร บางทีอาร์คิมิดีสอาจเห็นว่าวิธีการนี้ยังไม่เคร่งครัดพอ เขาจึงใช้ระเบียบวิธีเกษียณ (method of exhaustion) มาช่วยในการหาคำตอบ งานเขียนนี้อยู่ในรูปแบบของจดหมายที่ส่งถึงเอราทอสเทนีสแห่งอเล็กซานเดรีย เช่นเดียวกับ ปัญหาเรื่องวัวของอาร์คิมิดีส
ผลงานที่สูญหาย
ผลงานเรื่อง Book of Lemmas หรือ Liber Assumptorum เป็นหนึ่งในตำราของอาร์คิมิดีสเกี่ยวกับสัดส่วน 15 ประการของธรรมชาติของวงกลม สำเนาชุดที่เก่าแก่ที่สุดเท่าที่รู้จักกันเขียนเอาไว้ในภาษาอารบิก นักวิชาการ ที.แอล.ฮีธ และ มาร์แชล คลาเกตต์ โต้แย้งว่ารูปแบบในปัจจุบันนี้ไม่น่าจะเขียนขึ้นโดยอาร์คิมิดีส เพราะมีการอ้างถึงอาร์คิมิดีสเองด้วย จึงน่าจะเป็นงานดัดแปลงที่เกิดจากผู้เขียนคนอื่นLemmas อาจเป็นงานที่สร้างขึ้นจากผลงานก่อนหน้านี้ของอาร์คิมิดีสซึ่งปัจจุบันสูญหายไปแล้ว
นอกจากนี้ยังมีการกล่าวอ้างว่า อาร์คิมิดีสรู้จักสมการของเฮรอนซึ่งใช้ในการคำนวณพื้นที่ของสามเหลี่ยมจากความยาวของด้านทั้งสามc อย่างไรก็ดี หลักฐานอ้างอิงที่เชื่อถือได้ชิ้นแรกเกี่ยวกับสมการนี้ก็เป็นของเฮรอนแห่งอเล็กซานเดรียในคริสต์ศตวรรษที่ 1
สมุดบันทึกของอาร์คิมิดีส
-
ดูบทความหลักที่ สมุดบันทึกของอาร์คิมิดีส
Stomachion คือปริศนาจำแนกส่วน ซึ่งปรากฏในสมุดบันทึกของอาร์คิมิดีส
เอกสารอันโดดเด่นที่สุดที่บรรจุผลงานของอาร์คิมิดีส ได้แก่ สมุดบันทึกของอาร์คิมิดีส (Archimedes Palimpsest) โจฮัน ลุดวิก ไฮเบิร์ก ศาสตราจารย์ชาวเดนมาร์กได้ไปเยี่ยมเยือนกรุงคอนสแตนติโนเปิลเมื่อปี ค.ศ. 1906 และได้ตรวจสอบบันทึกบนหนังแพะ 174 หน้าที่เขียนขึ้นในคริสต์ศตวรรษที่ 13 เขาค้นพบว่า มันคือ สมุดบันทึกพาลิมเซสต์ (palimpsest) คือเอกสารที่มีการเขียนข้อความซ้ำแล้วซ้ำอีกทับผลงานเขียนเดิม โดยการขูดหมึกจากงานเก่าออกแล้วนำแผ่นหนังกลับมาใช้ใหม่ ซึ่งเป็นวิธีการที่ใช้กันอยู่ทั่วไปในยุคกลางเพราะกระดาษหนังสัตว์มีราคาแพงมาก นักปราชญ์ในคริสต์ศตวรรษที่ 10 ได้ตรวจสอบและยืนยันว่างานเขียนเก่าบนพาลิมเซสต์เหล่านี้คือตำราของอาร์คิมิดีสที่ยังไม่มีใครรู้จักมาก่อน แผ่นหนังสัตว์เหล่านี้ถูกเก็บรักษาไว้ที่ห้องสมุดประจำอารามในกรุงคอนสแตนติโนเปิลเป็นเวลาหลายร้อยปี ก่อนจะถูกขายให้แก่นักสะสมเอกชนในราวคริสต์ทศวรรษ 1920 วันที่ 29 ตุลาคม ค.ศ. 1998 มันถูกนำออกประมูลขายไปให้แก่ผู้ซื้อที่ไม่ปรากฏชื่อเป็นเงิน 2 ล้านเหรียญสหรัฐที่บริษัทประมูลคริสตีส์ ในกรุงนิวยอร์ก ภายในพาลิมเซสต์นี้บรรจุตำรา 7 เล่ม ซึ่งรวมถึงสำเนาชุดเดียวที่เหลือรอดอยู่ของ On Floating Bodies ในต้นฉบับภาษากรีก เป็นแหล่งข้อมูลเดียวเท่าที่รู้จักของ The Method of Mechanical Theorems ซึ่งซุยดาสเคยกล่าวอ้างถึงและเชื่อกันว่าสูญหายไปตลอดกาลแล้ว การค้นพบ Stomachion ก็พบในพาลิมเซสต์นี้เช่นเดียวกัน พร้อมกับการวิเคราะห์ชุดสมบูรณ์ของปริศนาที่เคยพบในตำราอื่นก่อนหน้านี้
ปัจจุบันนี้ สมุดบันทึกพาลิมเซสต์ถูกเก็บรักษาเอาไว้ที่พิพิธภัณฑ์ศิลปะวอลเตอร์ส ที่เมืองบัลติมอร์ รัฐแมรีแลนด์ ซึ่งจะต้องถูกตรวจสอบด้วยกรรมวิธีทดสอบสมัยใหม่อีกหลายแบบ เช่นการตรวจด้วยแสงอัลตราไวโอเลตและแสงเอ็กซเรย์เพื่ออ่านข้อความที่ถูกเขียนทับไป
ตำราของอาร์คิมิดีสที่บรรจุอยู่ในสมุดบันทึกพาลิมเซสต์ชุดนี้ ได้แก่ : On the Equilibrium of Planes, On Spirals, Measurement of a Circle, On the Sphere and the Cylinder, On Floating Bodies, The Method of Mechanical Theorems และ Stomachion
อนุสรณ์

รูปหล่อสำริดของอาร์คิมิดีส ที่หอดูดาวอาร์เชนโฮลด์ เบอร์ลิน สร้างโดยเกอร์ฮาร์ด ไทเอม เปิดเมื่อ ค.ศ. 1972
แอ่งบนดวงจันทร์แห่งหนึ่งได้รับการตั้งชื่อว่า แอ่งอาร์คิมิดีส (29.7° N, 4.0° W) เพื่อเป็นเกียรติแก่เขา นอกจากนี้มีเทือกเขาบนดวงจันทร์แห่งหนึ่ง ชื่อว่า เทือกเขาอาร์คิมิดีส (Montes Archimedes) (25.3° N, 4.6° W).[62] รวมถึงดาวเคราะห์น้อย 3600 อาร์คิมิดีส ซึ่งตั้งชื่อตามชื่อของเขาด้วย
เหรียญรางวัลฟิลด์ส สำหรับผู้ประสบความสำเร็จอย่างโดดเด่นด้านคณิตศาสตร์ สลักภาพเหมือนของอาร์คิมิดีสไว้บนเหรียญ พร้อมกับการพิสูจน์ของเขาเกี่ยวกับเรื่องของทรงกลมและทรงกระบอก คำจารึกรอบๆ ศีรษะของอาร์คิมิดีสคือคำพูดของเขาซึ่งเขียนไว้ในภาษาละตินว่า : “Transire suum pectus mundoque potiri” (จงยืนขึ้นเหนือตนเองและคว้าโลกไว้

ภาพเหมือนของอาร์คิมิดีสบนเหรียญฟิลด์ส
ภาพอาร์คิมิดีสยังปรากฏบนดวงตราไปรษณียากรของเยอรมนีตะวันออก (ค.ศ. 1973), กรีซ (ค.ศ. 1983), อิตาลี (ค.ศ. 1983), นิคารากัว (ค.ศ. 1971),ซานมารีโน (ค.ศ. 1982), และสเปน (ค.ศ. 1963)
คำประกาศของอาร์คิมิดีสว่า ยูเรก้า! กลายเป็นคำขวัญประจำรัฐของแคลิฟอร์เนีย โดยใช้ในความหมายที่อ้างถึงการค้นพบทองคำบริเวณใกล้โรงนาซุตเทอร์ ในปี ค.ศ. 1848 อันเป็นจุดเริ่มต้นยุคการขุดทองในแคลิฟอร์เนีย
ขบวนการเคลื่อนไหวพลเรือนแห่งหนึ่งซึ่งมีเป้าหมายในการเข้าถึงข้อมูลสุขภาพสากลในรัฐออริกอน สหรัฐอเมริกา ใช้ชื่อขบวนการว่า “ขบวนการอาร์คิมิดีส” (Archimedes Movement) นำโดยอดีตผู้ว่าการรัฐออริกอน จอห์น คิตซเฮเบอร์
ที่มาดีๆ จาก: http://th.wikipedia.org/wiki/อาร์คิมิดีส
สุดยอดเลยครูอั๋น ผมขอแชร์ความรู้ดีๆอย่างนี้ให้นักเรียนผมนะครับ
ขอบคุณครับ เต็มที่ตามสะดวกเลยครับผม
ติดตามครูอั๋นมาพักนึงแล้วค่ะ ได้ความรู้ดี ๆ ไปบอกเล่าสู่นักเรียนฟังมากมายหลายเรื่องเลยทีเดียวค่ะ
ยินดีครับ และขอบคุณที่ติดตามครับผม
ขอบตุณที่ทำให้ ครูไทย เด็กไทย มีความรู้ any time any where
ขอบคุณครับ และยินดีมากครับ
ขอบคุณมากค่ะที่ให้ความรู้มาคนรุ่นหลัง
ยินดีครับผม
ขอบคุณมากค่ะ ที่ได้เพิ่มพูนความรู้ให้